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Biosurveillance Applying Scan Statistics
with Multiple, Disparate Data Sources

Howard S. Burkom

ABSTRACT Researchers working on the Department of Defense Global Emerging In-
fections System (DoD-GEIS) pilot system, the Electronic Surveillance System for the
Early Notification of Community-Based Epidemics (ESSENCE), have applied scan
statistics for early outbreak detection using both traditional and nontraditional data
sources. These sources include medical data indexed by International Classification of
Disease, 9th Revision (ICD-9) diagnosis codes, as well as less-specific, but potentially
timelier, indicators such as records of over-the-counter remedy sales and of school
absenteeism. Early efforts employed the Kulldorff scan statistic as implemented in the
SaTScan software of the National Cancer Institute. A key obstacle to this application
is that the input data streams are typically based on time-varying factors, such as
consumer behavior, rather than simply on the populations of the component subre-
gions. We have used both modeling and recent historical data distributions to obtain
background spatial distributions. Data analyses have provided guidance on how to
condition and model input data to avoid excessive clustering. We have used this meth-
odology in combining data sources for both retrospective studies of known outbreaks
and surveillance of high-profile events of concern to local public health authorities.
We have integrated the scan statistic capability into a Microsoft Access–based system in
which we may include or exclude data sources, vary time windows separately for dif-
ferent data sources, censor data from subsets of individual providers or subregions,
adjust the background computation method, and run retrospective or simulated
studies.
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INTRODUCTION

The US Department of Defense Global Emerging Infections System (DoD-GEIS)
has developed the Electronic Surveillance System for the Early Notification of Com-
munity-Based Epidemics (ESSENCE), which uses syndromic surveillance to create
an early warning system for disease outbreaks. ESSENCE monitors more than 100
primary care and emergency clinics in the National Capital Area (NCA) and, since
the terrorist attacks in September 2001, has collected data on approximately 100,000
cases per day from US military treatment facilities worldwide. Analysts from DoD-
GEIS and The Johns Hopkins University Applied Physics Laboratory have adapted
and implemented alerting algorithms for ESSENCE that enable prompt notification
of anomalous data counts. ESSENCE II, an extension of the original system, collects
civilian and military data in the NCA, with the addition of less-specific, but poten-
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tially timelier, indicators such as data on over-the-counter (OTC) remedy sales and
school absenteeism. Because advances in informatics and communications have per-
mitted substantial increases in the volume and detail of this information, efficient
data reduction and interpretation are crucial for rapid recognition of threats to
public health.

The principal objectives of ESSENCE II are the early identification, character-
ization, and tracking of disease outbreaks. ESSENCE II will combine information
from widely disparate medical sources, including number of emergency room visits,
outpatient visits, and insurance claims, and from nonmedical sources such as counts
of OTC remedy sales and school absentees. The time series of daily counts from
these sources differ in scale, variance, weekly/seasonal behavior, and other charac-
teristics. Thus, an alerting system that combines data from these sources must toler-
ate these features and must be able to accommodate data dropouts as well as catch-
up reports from individual sources.

We use spatial and temporal data in efforts to improve the promptness of out-
break alerting. A potential problem with sophisticated temporal detectors, however,
is choosing the appropriate size and location of the collection region for time series
counts. If this region is too small or mislocated, cases may be missed, and the
baseline data may not have enough structure, but if the region is too large, the scale
and variability of the large-scale time series may reduce sensitivity. We apply spa-
tial-temporal scan statistics in an attempt to localize public health problems
promptly. Our early efforts employed the Kulldorff scan statistic1 as implemented
in the SaTScan software2 of the National Cancer Institute, and research is under
way to enhance this capability.

METHODS

SaTScan Concepts
Given a subdivision of the surveillance region into subregions, we wish to find the
clusters of subregions with combined data counts that are most unlikely to occur
in normal circumstances and to evaluate the significance of these clusters—that is,
to estimate how unlikely they are.

Candidate clusters are formed by considering each of a family of circles cen-
tered at each of a set of grid points—often taken as the full set of subregion centro-
ids. A candidate cluster is defined as those subregions with centroids that lie in the
associated circle. For each grid point, candidate cluster sizes range from a single
subregion up to a set of subregions containing a preset maximum fraction of the
total case count N. In SaTScan, a statistic is applied to each candidate cluster.
Kulldorff’s3 formulation of this statistic is the likelihood ratio LR:

LR(J) = [O(J)/E(J)]O( J )�[(N − O(J))/(N − E(J))](N−O( J))

where J refers to the set of subregions with centroids that lie in a candidate circle,
O(J) is the sum of the observed counts in the subregions included in J, E(J) is the
sum of the expected counts in the subregions included in J, and N is the total
number of cases in the region.

The maximum likelihood cluster is then the set J* of subregions with the largest
LR among the candidate clusters. A P-value estimate for the statistical significance
of this cluster is determined empirically by ranking the value of LR(J*) among
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other maximum likelihood ratios, each calculated similarly from a random sample
of the N cases based on the expected spatial distribution. Once a set of subregions
is associated with a maximal cluster, secondary clusters are chosen from the succes-
sively remaining subregions and assigned significance levels using the same ranking.

Adaptations for Processing Multiple Biosurveillance
Data Sources
In the conventional use of SaTScan, expected values for the subregions are calcu-
lated from the respective populations, assuming uniform spatial incidence; however,
counts from most of our data sources are not population based. For example, the
distribution of insurance claim data depends on factors such as the distribution of
eligible consumers and participating care providers. We derived expected counts
both from modeling individual subregion counts and from recent data history. A
common technique is to use the spatial distribution of counts from a baseline inter-
val that extends far enough into the past to represent the entire region, yet is recent
enough to represent spatial trends.

Our initial approach to combining counts from multiple sources was to treat
them as covariates so that we could apply SaTScan directly. This approach requires
calculation of expected values for each source in each subregion from source-specific
spatial probabilities and case counts. Once expected values are computed, covariate
observed and expected counts are summed, and the likelihood ratio statistic is com-
puted. We followed these procedures for multiple sources of medical data treated
separately, for absentee counts from different counties (to normalize by county
schedule), and for OTC sales from separate store chains. This approach allows us
to mix data organized by such variables as patient residence ZIP code, provider
location, and store or school address. When adding a new data source, we assign a
new covariate number and append the new locations to the aggregate file of spatial
coordinates, provided that exact coordinates are not repeated and that each ZIP
code or site has a unique identifying string. Expected and observed counts for the
new source are then tabulated and included as covariate counts along with counts
of the remaining data sources. The spatial clustering includes locations of all the
various data sources.

We integrated this multiple-source SaTScan capability into an ACCESS-based
system in which we may include or exclude data sources, vary time windows sepa-
rately for different data sources, censor data from subsets of individual providers
or subregions, adjust the background computation method, and run retrospective
or simulated studies. Figure 1 shows the control form and the data specification
form for outpatient visits.

Data Analysis
Detailed data analysis is necessary before we include a new data source in the
surveillance clustering. Without this analysis, applying a scan statistic may produce
spurious clusters that can mask the space-time interaction of interest. The general
principle is to include the most “signal,” or cases of interest, with the least “noise.”
For the recent studies discussed in this article, we used data analysis to improve the
expected spatial data distributions in three ways: (1) by the judicious choice of the
outcome variable to restrict cases to stably distributed counts, (2) by ignoring counts
from subregions with dubious reporting, and (3) by choosing a baseline period that
the analysis indicates as both recent and representative. This baseline period may
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FIGURE 1. Sample output from surveillance combining counts of outpatient visits, over-the-
counter antiflu sales, and school absentees.

vary by data type. Other applications may require different methods for spatial
estimation, depending on the data sources and surveillance objective.

Choice of an outcome variable is important in the use of diagnosis counts for
clustering. For medical data, ESSENCE II uses syndromic surveillance, that is, the
monitoring of counts of outpatient visits with diagnoses falling in any of seven
syndrome groups chosen by DoD-GEIS for surveillance: respiratory, gastrointesti-
nal, fever, dermatologic infectious, dermatologic hemorrhagic, neurologic, and coma.
ESSENCE II increments the count for a syndrome group each time a diagnosis code
falls in the corresponding list. We examine the spatial and temporal behavior of
the various syndrome group counts, especially during cold season, to refine the
syndrome groups and subgroups for more sensitive, specific clustering. We also
examine each source of data at the local level to reduce noisy temporal behavior
that can lead to excessive clustering. For example, we would exclude absentee counts
from a school that often skips reporting or that has counts that are especially er-
ratic. For OTC sale data, counts are usually restricted to sales of influenza or diar-
rhea remedies.

RESULTS

We used this methodology to combine data sources for both retrospective studies
of known outbreaks and surveillance of high-profile events of concern to local pub-
lic health authorities. Figure 2 shows a representative portion of an output file; note
that clusters may include sites from any combination of the included data sources.

Simulations for Performance Analysis
In the absence of sufficient authentic disease outbreaks to demonstrate the advan-
tage of using scan statistics with multiple data sources, we used simulations to test
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FIGURE 2. Control interface for multiple-source surveillance with SaTScan.

the performance of these methods against a variety of modeled outbreaks. We illus-
trate the methodology for these simulations with a purely spatial Monte Carlo ap-
proach. For a particular data source (e.g., counts of outpatient visits with a diagno-
sis assigned to the respiratory syndrome), assume that we have an expected spatial
distribution of these syndrome counts over the subregions (e.g., patient ZIP codes)
of the surveillance area. To examine the clusters produced using the scan statistic,
we use many iterations of the following procedure:

1. For a set of background cases, compute a spatial case distribution with a
multinomial random draw based on expected spatial probabilities.

2. For a test signal, choose an outbreak epicenter in the surveillance region for
each test background. Compute a signal probability distribution over the
subregions that decays exponentially with the distance from the epicenter.
The signal is then a small number of additional cases chosen from this distri-
bution with another multinomial draw.

3. Add the background and signal cases and find the maximal clusters with a
spatial scan statistic.

4. Define a true cluster as a computed cluster that contains a subregion with a
centroid that is within a threshold distance of the epicenter. Define false
clusters as computed clusters that do not satisfy this criterion—clusters
away from the epicenter.

For the entire set of clustering runs conducted with this procedure, we then
ask: for a threshold value t, in what fraction of all runs is there a true cluster with
a scan statistic that exceeds t, and in what fraction is there a false cluster with a
scan statistic that exceeds t? By varying this threshold over the values obtained for
computed clusters, we obtain a curve, similar to a receiver operating characteristic
(ROC) curve, that plots the probability of finding the outbreak versus the probabil-
ity of a false cluster. (For a discussion of ROC curves, see Ref. 4.)
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Figure 3 compares several of these curves. In each case, the number of outbreak
cases is 40% of the number of background cases. The thick solid and dashed curves
were computed by clustering with respiratory claims and OTC antiflu sales, respec-
tively. The thin dashed curve was computed by clustering with both data sources.
The thin solid curve on the logarithmic scale is the 45° line normally used to indi-
cate a completely random detector. For reasonable detection probabilities, we see
a substantial gain when the sources are combined.

Dependence on Incidence and Relative Risk
of Outbreak Cases
The detector performance shown by the ROC curve depends on the number of
outbreak cases added to the data and on the concentration of these cases within
the surveillance area. In the above simulation algorithm, the concentration is deter-
mined by the decay constant for the exponential spread of the signal cases. In the
simulations, we vary the number of added cases and this decay constant to see how
the performance of the scan statistic varies with incidence (because these cases are
assumed absent from the baseline period) and relative risk in computed clusters.
We present an example using the influenzalike illness (ILI) claim counts and antiflu
sales in six Monte Carlo simulations with three outbreak sizes, each at two concen-
tration levels. Outbreak sizes in this example are 0.10, 0.15, and 0.20 times the
number of background cases. We used two outbreak concentrations. For the more

FIGURE 3. Simulation showing potential advantage of spatial clustering using multiple data
sources.
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diffuse case injections, a circle drawn about the epicenter to include half the injected
cases contains about 40 ZIP codes of 190 in the surveillance region, while for the
more concentrated injections, this circle contains only about 20 ZIP codes. The
ROC curves computed from the six simulations are sampled in the Table, which
shows the probabilities of selecting a true cluster for the point on each curve with
a 0.05 false cluster probability.

For the diffuse outbreak, the scan statistic with the combination of sources
does not show an advantage over using ILI visits alone. For the concentrated out-
break, we see the advantage shown in Fig. 3 for each outbreak size. Similar experi-
ments have suggested that the combination of sources improves the performance of
the scan statistic if the injected case concentration falls within limits determined by
the outbreak size. If the concentration is too low, none of the methods give high
detection probabilities, while if it is too high, they all do well.

This performance analysis technique has several applications. It may be used
to assess the marginal surveillance value of a single data source or to investigate
how early an outbreak is likely to be detected as the spatial case distribution
evolves. We also use it to compare the performance of the likelihood ratio statistic
used in SaTScan to other possible scan statistics.

DISCUSSION

This article discusses the application of the method of scan statistics widely used in
spatial epidemiology to biosurveillance using multiple, disparate data sources. The
success of this application requires an understanding of the spatial and temporal
behavior of each source so that we can judiciously choose an outcome variable and
calculate the expected spatial distribution of data counts. We implemented this
method combining a variety of data sources, and we anticipate increases in early
outbreak alerting capability as the number of data sources and promptness of data
reporting increase.

Limitations and Caveats
Clusters identified by SaTScan or by our derived methods should be understood as
approximate locations of concentrated data counts that may indicate an outbreak
of disease. The statistical significance and persistence of these clusters should be
used to evaluate their importance. They are also valuable as cues for and corrobora-

TABLE. Empirical probabilities of finding clusters of injected cases gven a .05
probability of computing a false cluster, with varying outbreak size and concentration

Ratio of
Injected injected to Influenzalike Over-the-counter Visits and sales
risk type background cases illness visits sales combined

Diffuse .10 .31 .23 .31
.15 .15 .17 .25
.20 .51 .37 .50

Concentrated .10 .35 .28 .48
.15 .39 .46 .70
.20 .66 .58 .86
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tion of other surveillance measures. Several potential problems for the data fusion
approach presented above must also be understood:

1. Because the scan statistic numerators are formed by adding counts of dispa-
rate sources, a data source with highly variable or relatively large counts
may mask signals in sources with smaller or more stable counts.

2. The addition of sources causes the computation of more clusters with just a
few cases where nearly none are expected. A strategy for when to abandon
such clusters as “epidemiologically insignificant” is necessary. Unless treated
as exceptions, these small clusters raise the false cluster probabilities on the
ROC curves.

3. For a realistic simulation, data analysis is needed to estimate the relative
effects of an outbreak on different data sources and the expected time delay
for the effect to appear in each source.

A Stratified Scan Statistic
We implemented a simple modification to the data fusion approach to treat the
problem of different data scales or variances noted in the first caveat above. Instead
of computing log(LR) using numerators and denominators summed over the
sources, we compute log(LRj) separately for each source j and treat the sum of
these logarithms as the scan statistic. The downloadable SaTScan software does not
allow this modification, but our preliminary experience with it has been encourag-
ing. Summing the log likelihood values does lessen the problem of mismatched data
scales; the intuitive drawback is that computing separate LRj values decreases the
power to detect a faint outbreak with slight increases in multiple sources. However,
ROC comparisons of this stratified method with the covariate method suggest at
most a slight loss in the power to detect combined clusters.

Another potential advantage of taking individual log(LRj) values is that the
statistic may be modified by weighting these values; such weighting cannot be done
in the covariate method because the SaTScan numerators must be original data
counts. Furthermore, the strategy of summing logarithms for separate data sources
may be extended to other candidate scan statistics, as in Ref. 5.

We are continuing efforts to improve the use of scan statistics for multiple data
sources through data analysis, mathematical fusion methods, and alternate scan
statistics.
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